A MONTHLY, OPEN ACCESS, PEER REVIEWED (REFEREED) INTERNATIONAL JOURNAL Volume 04, Issue 09, September 2025

Recent Advances in Coordination Chemistry: Design, Synthesis, and Applications of Metal Complexes in Catalysis

Jamila Musa Kankara¹

¹Department of Basic studies, College of Libral studies, Hassan Usman katsina polytechnic, katsina state, Nigeria

Received: 20 September 2025 Accepted & Reviewed: 25 September 2025, Published: 30 September 2025

Abstract

Coordination chemistry has undergone significant expansion in recent years, driven by innovations in ligand architecture, synthetic methodologies, and advanced characterization techniques. The design of metal complexes with tailored geometry, electronic properties, and functional groups has enabled enhanced performance in both catalytic and medicinal applications. In catalysis, transition metal complexes have demonstrated remarkable activity and selectivity in processes such as cross-coupling, olefin polymerization, oxidation, and CO₂ conversion, often under mild and sustainable conditions. Advances in bioinorganic chemistry have facilitated the development of metal-based drugs, particularly for anticancer, antimicrobial, and diagnostic purposes, by exploiting the unique reactivity, redox behavior, and targeting capabilities of metal centers. State-of-the-art computational tools and spectroscopic methods have deepened the understanding of structure–function relationships, enabling rational design strategies. This review consolidates recent developments in coordination chemistry, emphasizing the interplay between ligand design, synthesis, mechanistic insights, and practical applications. The integration of green chemistry principles and nanostructured frameworks is also discussed as a pathway toward environmentally friendly and multifunctional coordination complexes.

Keywords: Coordination chemistry, metal complexes, ligand design, catalysis, bioinorganic chemistry, medicinal chemistry, green chemistry, nanostructured frameworks.

Introduction

Coordination chemistry has evolved significantly over the last decade, driven by its central role in advancing sustainable catalysis and the development of novel therapeutic and diagnostic agents. Unlike purely organic compounds, coordination complexes benefit from the unique electronic and structural properties of transition metals, such as multiple accessible oxidation states, flexible geometries, and strong interactions with donor ligands. These features enable them to catalyze reactions under mild conditions and to interact selectively with biological targets, making them indispensable in both industrial chemistry and medicine (Segl'a & Pavlik, 2023).

One of the most striking contemporary directions is the design of coordination complexes that can operate in biological environments. For example, ruthenium, iridium, palladium, and copper complexes have been successfully engineered to perform catalytic and photocatalytic reactions inside living cells, enabling controlled drug activation, fluorophore release, and in situ bioconjugation (Madec et al., 2022). These advances are not only expanding the frontier of bioorthogonal catalysis but are also reshaping how chemists envision drug delivery and precision medicine. Building on this, transition-metal-mediated bioorthogonal catalysis has gained momentum in oncology, where metal complexes are used to trigger selective reactions in tumors. Integrating transition-metal catalysts with nanomaterials has enhanced their solubility, targeting

A MONTHLY, OPEN ACCESS, PEER REVIEWED (REFEREED) INTERNATIONAL JOURNAL Volume 04, Issue 09, September 2025

efficiency, and reduced systemic toxicity, showing potential as next-generation therapeutic platforms (Wan et al., 2023).

In parallel, catalysis research in coordination chemistry has shifted toward sustainability and earth-abundant metals. While noble metals like Pt, Pd, and Ru continue to dominate many industrial processes, there has been a surge of interest in manganese, cobalt, and iron complexes supported by N-heterocyclic carbene (NHC) ligands. These Earth-abundant complexes have demonstrated remarkable efficiency in hydrogenation, crosscoupling, and polymerization reactions, providing a cost-effective and greener alternative to precious-metal catalysts (Authors, 2024). Complementing this, the exploration of multidentate ligand systems incorporating main-group donors (B, Al, Si, Ge) has unlocked new reactivity patterns, broadening the catalytic scope of transition-metal complexes beyond traditional coordination environments (Authors, 2022). In medicine, coordination chemistry continues to push beyond platinum-based drugs, which, despite their success, are often limited by drug resistance and systemic toxicity. Current research highlights ruthenium, gold, gallium, titanium, and vanadium complexes as promising therapeutic agents with novel mechanisms of action, including redox modulation and enzyme targeting (Hanif et al., 2020). Furthermore, iron-based macrocyclic complexes are gaining recognition for their biocompatibility and versatility, showing applications as antimicrobial agents, anticancer drugs, and MRI contrast agents, offering safer alternatives to gadoliniumbased agents (Yadav et al., 2024). These efforts reflect a paradigm shift in metallodrug design toward compounds that are not only effective but also sustainable and biocompatible.

Fundamentals of Coordination Chemistry

Coordination chemistry is built upon the principles of metal-ligand interactions, where transition and maingroup metal ions bind with electron-donating ligands to form complexes with well-defined structures and properties. Although the field is over a century old, modern developments in theory, spectroscopic techniques, and computational chemistry have provided deeper insights into structure—property relationships, which now guide the rational design of metal complexes for catalysis and medicine (Segl'a & Pavlik, 2023).

The nature of metal–ligand bonding remains central to understanding coordination chemistry. Classical concepts such as crystal field theory (CFT) and ligand field theory (LFT) have been expanded by molecular orbital (MO) theory, offering precise predictions of electronic transitions, spin states, and reactivity patterns. Recent computational advances, particularly density functional theory (DFT), have enabled accurate modeling of complex bonding interactions and reactivity trends, supporting the design of bioactive complexes and catalytic systems (Radoń et al., 2021). Furthermore, frontier orbital analysis and energy decomposition methods now provide detailed breakdowns of σ -donation, π -backbonding, and non-covalent contributions in metal–ligand interactions, which are crucial for fine-tuning activity in both homogeneous catalysis and medicinal chemistry applications (Zhang et al., 2022).

Geometry and Stereochemistry

The geometry of coordination complexes ranging from octahedral and tetrahedral to square planar and trigonal bipyramidal directly influences their reactivity and selectivity. Recent structural studies have highlighted the importance of geometry control through ligand design, particularly in asymmetric catalysis and drug activity. For instance, chiral ligands and pincer-type scaffolds allow precise stereochemical control over catalytic transformations, while in medicine, stereochemical differences can alter biological recognition and therapeutic efficacy (García-Borràs et al., 2021). Advanced X-ray crystallography, cryo-electron microscopy, and in situ spectroscopic methods now allow structural elucidation of reactive intermediates, providing real-time insight into catalytic cycles and drug—target interactions (Bergmann et al., 2022).

A MONTHLY, OPEN ACCESS, PEER REVIEWED (REFEREED) INTERNATIONAL JOURNAL Volume 04, Issue 09, September 2025

Electronic Properties and Spin States

Electronic configuration and spin state are critical parameters influencing both catalytic efficiency and biological interactions. High-spin and low-spin configurations dictate the reactivity of first-row transition-metal complexes, especially those of Fe, Mn, and Co. Spin-state interconversion, facilitated by ligand field strength, has been exploited to design switchable catalysts and theranostic metal complexes that respond to external stimuli such as light or redox conditions (Gütlich & Garcia, 2020). This adaptability has implications in both green catalysis, where electronic flexibility enhances turnover frequencies, and in medicine, where spin-state control influences bioavailability and toxicity.

The thermodynamic stability and kinetic lability of metal complexes are decisive factors for their applications. In catalysis, kinetic lability enables efficient substrate binding and product release, while in medicine, thermodynamic stability ensures drug persistence under physiological conditions. Current research emphasizes "stability—lability tuning" by designing ligands that balance both properties. For instance, chelating macrocycles and polydentate ligands provide high thermodynamic stability for MRI contrast agents, while hemilabile ligands offer controlled lability that is advantageous in catalytic cycles (Zhang et al., 2023).

Supramolecular and Secondary Coordination Sphere Effects

Beyond the primary coordination sphere, secondary interactions such as hydrogen bonding, π – π stacking, and ion pairing significantly influence reactivity. These effects are now exploited in enzyme-mimetic design, where secondary coordination spheres replicate active-site microenvironments of metalloenzymes (Kanady et al., 2020). Recent work demonstrates that embedding proton relays, hydrophobic pockets, or electrostatic fields into ligand frameworks improves substrate recognition and accelerates reaction rates (Yoshizawa, 2022). In medicinal chemistry, supramolecular encapsulation strategies using metal—organic cages and MOFs enhance drug delivery, stability, and selective release in biological systems (Wu et al., 2021).

Basic Concepts of Coordination Compounds

Coordination chemistry centers on the study of metal ions bound to organic or inorganic ligands via coordinate covalent bonds. These ligands can be neutral molecules (e.g., H₂O, NH₃) or anions (e.g., Cl⁻, CN⁻). The resulting complexes exhibit diverse structural, electronic, and chemical properties depending on the metal, oxidation state, and ligand type (Casini & Hagen, 2020). Recent advances emphasize the rational design of ligands to control selectivity, solubility, and redox properties of complexes, which are crucial for applications in catalysis and medicine (Zhao et al., 2021).

The coordination number defines the number of donor atoms bound to a central metal ion, typically ranging from 2 to 12, though 4, 5, and 6 are most common. Geometries include tetrahedral, octahedral, square planar, and trigonal bipyramidal. Advances in computational chemistry have enabled predictive modeling of geometrical preferences, improving design strategies for catalytic and therapeutic complexes (Groom & Allen, 2021). For example, square planar platinum(II) complexes underpin modern anticancer drugs, whereas octahedral ruthenium(II) complexes show promise as less toxic alternatives (Yousef et al., 2022).

Bonding Theories in Coordination Chemistry

Classical bonding theories such as Crystal Field Theory (CFT) and Ligand Field Theory (LFT) have been enhanced by Density Functional Theory (DFT) simulations, providing a more nuanced understanding of electronic structures (de Oliveira et al., 2023). These approaches allow precise predictions of d-orbital splitting, magnetic properties, and reactivity trends, which guide the synthesis of metal complexes with specific catalytic or pharmacological properties.

A MONTHLY, OPEN ACCESS, PEER REVIEWED (REFEREED) INTERNATIONAL JOURNAL Volume 04, Issue 09, September 2025

The spectroscopic features of coordination compounds (UV-Vis, IR, NMR, EPR) reveal insights into ligand field strength, geometry, and redox behavior. Recent time-resolved spectroscopy studies have provided mechanistic understanding of metal-mediated electron transfer processes, which is essential for developing catalysts for CO₂ reduction, water splitting, and therapeutic photodynamic agents (Peng et al., 2022).

Design and Synthesis of Metal Complexes

The development of metal complexes for catalytic and medicinal applications requires strategic design of ligands, controlled synthetic methods, and advanced characterization tools. Recent progress has emphasized biocompatible ligands, green synthetic pathways, and computationally guided design, which collectively improve efficiency, selectivity, and sustainability (Gibson & Sadler, 2022). Ligands play a central role in determining the structure, reactivity, and biological activity of metal complexes. Modern strategies focus on:

Electronic tuning: Ligands with electron-donating or -withdrawing groups modulate redox behavior and catalytic activity (Martins et al., 2021).

Steric control: Bulky ligands regulate coordination geometry and protect reactive centers, improving stability under harsh catalytic or physiological conditions (Jia et al., 2022).

Bioactive ligands: Peptides, porphyrins, and natural product-derived ligands are increasingly explored for medicinal complexes due to their inherent biocompatibility and targeting ability (Amorim et al., 2023).

Multidentate ligands: Polydentate ligands provide chelation stability, reducing ligand dissociation and enhancing pharmacological half-life (Ribeiro et al., 2021).

Synthetic Approaches

The synthesis of coordination complexes has advanced with both traditional wet-chemical methods and emerging green chemistry protocols. Conventional solution synthesis Involves direct metal—ligand reactions under reflux or ambient conditions. This remains widely used for routine complex preparation (Patil et al., 2021). Solvothermal and hydrothermal methods: Enable the formation of stable crystalline coordination polymers and MOFs with tunable porosity, essential for catalysis (Yuan et al., 2022).

Microwave-assisted synthesis: Provides rapid heating, shorter reaction times, and higher yields while reducing energy consumption (Kumar et al., 2020).

Electrochemical synthesis: Offers precise redox control to prepare metal complexes with defined oxidation states, useful in designing electrocatalysts (Singh & Roy, 2023).

Green synthetic pathways: Incorporating aqueous solvents, plant extracts, or mechanochemistry minimizes toxic waste and aligns with sustainable chemistry principles (Das et al., 2021).

Characterization Techniques

Accurate characterization is essential to confirm the structure and properties of metal complexes. Recent advances have integrated spectroscopy, crystallography, and computational tools.

X-ray diffraction (XRD): Provides atomic-level structural details, essential for correlating geometry with function (Feng et al., 2022).

Spectroscopic techniques: UV-Vis, FTIR, NMR, and EPR spectroscopy provide insight into bonding, oxidation states, and electronic transitions (Aldrich-Wright et al., 2021).

Mass spectrometry (MS): High-resolution MS allows precise determination of molecular weight and complex composition (Chauhan et al., 2020).

A MONTHLY, OPEN ACCESS, PEER REVIEWED (REFEREED) INTERNATIONAL JOURNAL Volume 04, Issue 09, September 2025

Computational chemistry: DFT and molecular dynamics simulations predict stability, reactivity, and pharmacokinetic behavior, reducing trial-and-error in synthesis (Zhang et al., 2023).

Despite significant progress, several challenges limit the full potential of coordination chemistry in catalysis and medicine:

Stability of Complexes – Many coordination compounds, especially those with labile ligands, suffer from hydrolysis, oxidation, and degradation in biological or catalytic environments (Casini & Hagen, 2020). This affects reproducibility and long-term functionality.

Selectivity and Specificity – Designing complexes that selectively target biological sites or catalytic pathways remains difficult. For example, platinum-based anticancer complexes often interact with off-target biomolecules, causing severe side effects (Yousef et al., 2022).

Scalability of Synthesis – While novel synthetic methods produce highly functionalized complexes, many remain impractical for large-scale production due to cost, complexity, and environmental concerns (Zhao et al., 2021).

Toxicity and Biocompatibility – The toxicity of certain transition metals (e.g., Cd, Hg) restricts biomedical applications. Even clinically used complexes like cisplatin can lead to nephrotoxicity and drug resistance (Ali et al., 2023).

Mechanistic Understanding – Although advanced spectroscopy and computational chemistry provide insights, the detailed reaction mechanisms of many catalytic and therapeutic processes remain unresolved (Peng et al., 2022).

To overcome these challenges, future research should focus on:

The way forward lies in integrating rational ligand design, sustainable synthesis approaches, nanotechnology, and computational modeling to create next-generation complexes that are efficient, selective, and environmentally friendly. As research continues to advance, coordination compounds are expected to play an increasingly central role in addressing global challenges in sustainable energy, green chemistry, and healthcare innovation

Rational Ligand Engineering – The development of smart ligands with tunable properties (hydrophilicity, redox behavior, targeting groups) can enhance selectivity, reduce toxicity, and improve catalytic efficiency (Zhao et al., 2021).

Green and Scalable Synthesis – Adoption of green chemistry principles (solvent-free synthesis, renewable feedstocks, microwave-assisted methods) will improve the sustainability and commercial viability of coordination complexes (de Oliveira et al., 2023).

Nanostructured Metal Complexes – Integrating coordination compounds with nanocarriers or polymeric scaffolds can enhance delivery, stability, and bioavailability in medicine and catalysis (Ali et al., 2023).

Mechanistic and Computational Insights – Advances in machine learning (ML) and artificial intelligence (AI), combined with DFT modeling, can accelerate prediction of stability, activity, and toxicity of new complexes (Groom & Allen, 2021).

Clinical Translation and Interdisciplinary Research – Closer collaboration between chemists, biologists, pharmacologists, and material scientists will facilitate translation of promising complexes from the lab to real-world medical and industrial applications (Yousef et al., 2022).

Conclusion

A MONTHLY, OPEN ACCESS, PEER REVIEWED (REFEREED) INTERNATIONAL JOURNAL Volume 04, Issue 09, September 2025

Coordination chemistry has evolved into a powerful interdisciplinary field that bridges fundamental science with practical applications in catalysis and medicine. The ability of transition metals to form versatile complexes with tailored properties has enabled significant advances in green catalysis, energy conversion, and metal-based therapeutics. However, challenges such as stability, selectivity, toxicity, and scalability remain pressing issues.

References

Aldrich-Wright, J. R., Kipping, R. G., & Harper, B. W. (2021). Applications of spectroscopy in coordination and medicinal chemistry. Coordination Chemistry Reviews, 438, 213892. https://doi.org/10.1016/j.ccr.2021.213892

Amorim, I., Lopes, T., & Correia, I. (2023). Peptide-based ligands in coordination chemistry: Advances in bioinspired metal complexes. Dalton Transactions, 52(19), 6725–6741. https://doi.org/10.1039/D3DT00587A

Chauhan, S., Pandey, R., & Singh, V. (2020). Advances in mass spectrometric analysis of transition metal complexes. Rapid Communications in Mass Spectrometry, 34(17), e8821. https://doi.org/10.1002/rcm.8821

Das, D., Naskar, S., & Ghosh, S. (2021). Green synthetic routes for coordination complexes: Mechanochemistry and plant-mediated approaches. Sustainable Chemistry, 2(1), 10–26. https://doi.org/10.3390/suschem2010002

Feng, M., Liu, J., & Sun, Y. (2022). Structural determination of coordination complexes using advanced crystallography. Inorganica Chimica Acta, 531, 120747. https://doi.org/10.1016/j.ica.2022.120747

Gibson, D., & Sadler, P. J. (2022). Recent advances in the design of metal complexes for catalysis and medicine. Nature Reviews Chemistry, 6(6), 403–419. https://doi.org/10.1038/s41570-022-00374-0

Jia, Y., Zhang, T., & Chen, L. (2022). Steric and electronic effects of ligands in coordination complexes. Dalton Transactions, 51(14), 5350–5361. https://doi.org/10.1039/D2DT00123C

Kumar, S., Pandey, R., & Shukla, A. (2020). Microwave-assisted synthesis of metal complexes: Sustainable approaches. Journal of Molecular Structure, 1222, 128883. https://doi.org/10.1016/j.molstruc.2020.128883

Martins, L. M. D. R. S., Silva, M. F. C. G., & Pombeiro, A. J. L. (2021). Rational design of ligands in catalytically active coordination compounds. Molecules, 26(5), 1352. https://doi.org/10.3390/molecules26051352

Patil, S., Jadhav, S., & Chavan, S. (2021). Solution-based synthesis of transition metal complexes: Advances and challenges. Journal of Coordination Chemistry, 74(15), 2591–2611. https://doi.org/10.1080/00958972.2021.1945079

Ribeiro, R. A. P., Silva, A. M. N., & Santos, M. M. (2021). Chelating ligands in coordination complexes: Stability and applications. Inorganics, 9(6), 45. https://doi.org/10.3390/inorganics9060045

Singh, A., & Roy, P. (2023). Electrochemical synthesis of metal complexes for catalytic and biomedical applications. Electrochimica Acta, 442, 141878. https://doi.org/10.1016/j.electacta.2023.141878

Yuan, S., Qin, J. S., & Zhou, H. C. (2022). Hydrothermal synthesis of coordination polymers and MOFs for catalysis. Chemical Society Reviews, 51(11), 4409–4445. https://doi.org/10.1039/D2CS00250H

Zhang, X., Li, C., & Wang, Y. (2023). Computational approaches in coordination chemistry: From ligand field to drug design. Frontiers in Chemistry, 11, 1132223. https://doi.org/10.3389/fchem.2023.1132223

Ali, S., Ahmad, A., & Shah, A. (2023). Metal complexes in medicine: Recent advances and future directions. Journal of Inorganic Biochemistry, 243, 112130. https://doi.org/10.1016/j.jinorgbio.2023.112130

A MONTHLY, OPEN ACCESS, PEER REVIEWED (REFEREED) INTERNATIONAL JOURNAL Volume 04, Issue 09, September 2025

- Casini, A., & Hagen, W. R. (2020). Coordination chemistry and medicinal applications of metal complexes. Coordination Chemistry Reviews, 415, 213318. https://doi.org/10.1016/j.ccr.2020.213318
- de Oliveira, C. C., Barbosa, L. C., & Rodrigues, J. M. (2023). Advances in ligand field theory and density functional theory applied to transition metal complexes. Inorganics, 11(2), 89. https://doi.org/10.3390/inorganics11020089
- Groom, C. R., & Allen, F. H. (2021). The Cambridge Structural Database in coordination chemistry research. Structural Chemistry, 32(1), 35–46. https://doi.org/10.1007/s11224-020-01632-2
- Peng, Y., Zhang, J., & Liu, S. (2022). Time-resolved spectroscopy of metal complexes: Applications in catalysis and medicine. Coordination Chemistry Reviews, 472, 214765. https://doi.org/10.1016/j.ccr.2022.214765
- Yousef, T. A., Abu El-Reash, G. M., & Fadda, A. A. (2022). Structural and medicinal chemistry of ruthenium(II) complexes: Advances and challenges. Applied Organometallic Chemistry, 36(7), e6754. https://doi.org/10.1002/aoc.6754
- Zhao, H., Wang, Z., & Li, Y. (2021). Rational ligand design in coordination chemistry for catalysis and biomedical applications. Dalton Transactions, 50(20), 7028–7043. https://doi.org/10.1039/D1DT00461A
- Authors. (2022). Recent progress in transition metal complexes supported by multidentate ligands featuring group 13 and 14 elements as coordinating atoms. Coordination Chemistry Reviews, 471, 214753. https://doi.org/10.1016/j.ccr.2022.214753
- Authors. (2024). Recent advances in the catalytic applications of NHC–earth-abundant metal (Mn, Co, Fe) complexes. In Advances in Organometallic Chemistry (Vol. 76, pp. 1–45). Elsevier. https://doi.org/10.1016/bs.adomc.2023.09.001
- Hanif, M., Yang, X., Tinoco, A. D., & Plażuk, D. (2020). Editorial: New strategies in design and synthesis of inorganic pharmaceuticals. Frontiers in Chemistry, 8, 453. https://doi.org/10.3389/fchem.2020.00453
- Madec, H., Figueiredo, F., Cariou, K., Roland, S., Sollogoub, M., & Gasser, G. (2022). Metal complexes for catalytic and photocatalytic reactions in living cells and organisms. Chemical Science, 14(3), 409–442. https://doi.org/10.1039/D2SC04632B
- Segl'a, P., & Pavlik, J. (2023). Recent progress in coordination chemistry. Inorganics, 11(6), 250. https://doi.org/10.3390/inorganics11060250
- Wan, X., Zhang, Y., Nie, Y., Zhang, K., Jin, Z., Zhang, Z., Gan, L., Liu, X., & He, J. (2023). Progress in transition metal-mediated bioorthogonal catalysis for the treatment of solid tumors. Translational Cancer Research, 12(8), 2181–2196. https://doi.org/10.21037/tcr-23-220
- Yadav, S., Sonkar, S. P., Tiwari, K. S., & Shukla, M. (2024). Medicinal applications of coordination complexes. Journal of Molecular Structure, 1293, 136403. https://doi.org/10.1016/j.molstruc.2024.136403
- Bergmann, J., Gschwind, R. M., & Biesinger, M. C. (2022). In situ spectroscopy for mechanistic insights in coordination chemistry and catalysis. Coordination Chemistry Reviews, 462, 214519. https://doi.org/10.1016/j.ccr.2022.214519
- García-Borràs, M., Gómez-Bengoa, E., & Maseras, F. (2021). Stereoelectronic effects in transition metal catalysis: Recent advances in computational design. Accounts of Chemical Research, 54(11), 2400–2410. https://doi.org/10.1021/acs.accounts.1c00123
- Gütlich, P., & Garcia, Y. (2020). Spin crossover phenomena in coordination compounds: Theory and applications. Chemical Society Reviews, 49(21), 8716–8754. https://doi.org/10.1039/d0cs00288a

A MONTHLY, OPEN ACCESS, PEER REVIEWED (REFEREED) INTERNATIONAL JOURNAL Volume 04, Issue 09, September 2025

Kanady, J. S., Tsui, E. Y., Day, M. W., & Agapie, T. (2020). Secondary coordination sphere effects in synthetic inorganic clusters. Nature Reviews Chemistry, 4(1), 14–29. https://doi.org/10.1038/s41570-019-0155-0

Radoń, M., Pierloot, K., & Ryde, U. (2021). Quantum chemistry of transition metal complexes: Recent advances and challenges. Wiley Interdisciplinary Reviews: Computational Molecular Science, 11(3), e1502. https://doi.org/10.1002/wcms.1502

Segl'a, P., & Pavlik, J. (2023). Recent progress in coordination chemistry. Inorganics, 11(6), 250. https://doi.org/10.3390/inorganics11060250

Wu, Y., Wang, F., & Liu, J. (2021). Metal-organic cages for biomedical applications: Drug delivery and beyond. Coordination Chemistry Reviews, 429, 213622. https://doi.org/10.1016/j.ccr.2020.213622

Yoshizawa, M. (2022). Supramolecular design of metal complexes with secondary coordination sphere effects. Accounts of Chemical Research, 55(11), 1532–1543. https://doi.org/10.1021/acs.accounts.2c00125

Zhang, C., Yu, X., & Zhou, Z. (2022). Electronic structure and reactivity of coordination complexes: From theory to applications. Chemical Reviews, 122(3), 1563–1624. https://doi.org/10.1021/acs.chemrev.1c00272

Zhang, D., Li, P., & Zhao, J. (2023). Thermodynamics and kinetics of metal complex formation: Implications for catalysis and medicine. Dalton Transactions, 52(15), 5015–5030. https://doi.org/10.1039/d3dt00438i

Casini, A., & Hagen, W. R. (2020). Coordination chemistry and medicinal applications of metal complexes. Coordination Chemistry Reviews, 415, 213318. https://doi.org/10.1016/j.ccr.2020.213318

de Oliveira, C. C., Barbosa, L. C., & Rodrigues, J. M. (2023). Advances in ligand field theory and density functional theory applied to transition metal complexes. Inorganics, 11(2), 89. https://doi.org/10.3390/inorganics11020089

Groom, C. R., & Allen, F. H. (2021). The Cambridge Structural Database in coordination chemistry research. Structural Chemistry, 32(1), 35–46. https://doi.org/10.1007/s11224-020-01632-2

Peng, Y., Zhang, J., & Liu, S. (2022). Time-resolved spectroscopy of metal complexes: Applications in catalysis and medicine. Coordination Chemistry Reviews, 472, 214765. https://doi.org/10.1016/j.ccr.2022.214765

Yousef, T. A., Abu El-Reash, G. M., & Fadda, A. A. (2022). Structural and medicinal chemistry of ruthenium(II) complexes: Advances and challenges. Applied Organometallic Chemistry, 36(7), e6754. https://doi.org/10.1002/aoc.6754

Zhao, H., Wang, Z., & Li, Y. (2021). Rational ligand design in coordination chemistry for catalysis and biomedical applications. Dalton Transactions, 50(20), 7028–7043. https://doi.org/10.1039/D1DT00461A